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AbstractCombining empirical risk minimization with capacity control is a classical strategy in machine learning when trying to control thegeneralization gap and avoid overfitting, as the model class capacity gets larger. Yet, in modern deep learning practice, very largeover-parameterized models (e.g. neural networks) are optimized to fit perfectly the training data and still obtain great generalizationperformance. Past the interpolation point, increasing model complexity seems to actually lower the test error.In this lecture, we explain the concept of double descent introduced by [4], and its mechanisms.Section 1 sets the classical statistical learning framework and introduces the double descent phenomenon. By looking at a numberof examples, section 2 introduces inductive biases that appear to have a key role in double descent by selecting, among the multipleinterpolating solutions, a smooth empirical risk minimizer. Finally, section 3 explores the double descent with two linear models, andgives other points of view from recent related works.
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1 Generalization error : classical view and modern practice
1.1 Definitions and results from statistical learningIn statistical learning theory, the supervised learning problem consists of finding a good predictor hn : Rd → {0, 1}, based on sometraining data Dn. The data is typically assumed to come from a certain distribution, i.e. Dn = {(X1, Y1), . . . , (Xn, Yn)} is a collectionof n i.i.d. copies of the random variables (X, Y ), taking values in Rd × {0, 1} and following a data distribution P(X, Y ). We alsorestrict ourselves to a given class of predictors by choosing hn ∈ H.

Definition 1 (True risk). With ` (h(X ), Y ) = 1(h(X ) 6=Y ) the 0-1 loss, the true risk (or true error) of a predictor h : Rd → {0, 1}
is defined as

L(h) = E[` (h(X ), Y )] = P(h(X ) 6= Y )
The true risk is also called the expected risk or the generalization error.
Remark 1. We choose in this section a classification setting, but a regression setting could be adopted as well, for instance
with Y and hn taking values in R (which we will sometimes do in the subsequent sections). In this case, the 0-1 loss is
replaced by other loss functions, such as the squared error loss ` (ŷ, y) = (ŷ− y)2.

In practice, the true distribution of (X, Y ) is unknown, so we have to resort to a proxy measure based on the available data.
Definition 2 (Empirical risk). The empirical risk of a predictor h : Rd → R on a training set Dn is defined as

Ln(h) = 1
n

n∑
i=1 ` (h(Xi), Yi)

Definition 3 (Bayes risk). A predictor h∗ : Rd → {0, 1} minimizing the true risk, i.e. verifying

L(h∗) = inf
h:Rd→{0,1} L(h)

is called a Bayes estimator. Its risk L∗ = L(h∗) is called the Bayes risk
Using Dn, our objective is to find a predictor hn as close as possible to h∗.

Definition 4 (Consistency). A predictor hn is consistent if

EL(hn) →n→∞ L∗

The empirical risk minimization (ERM) approach [25] consists in choosing a predictor that minimizes the empirical risk on Dn :
h∗n ∈ argminh∈HLn(h). This is something that can be done or approximated in practice, thanks to a wide range of algorithms andoptimization procedures, but it is also necessary to ensure that our predictor h∗n performs well in general and not only on trainingdata. Depending on the chosen class of predictors H, statistical learning theory can give us guarantees or insights to make sure h∗ngeneralizes well to unseen data.
1.2 Classical viewThe gap between any predictor hn ∈ H and h∗ can be decomposed as follows.

L(hn)− L∗ = L(hn)− inf
h∈H

L(h)︸ ︷︷ ︸estimation error
+ inf

h∈H
L(h)− L∗︸ ︷︷ ︸approximation error
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Remark 2. In addition to the approximation error (approximating reality with a model) and estimation error (learning a model
with finite data) which fits in the statistical learning framework and are the focus of this lecture, there is actually another
source of error, the optimization error. This is the gap between the risk of the predictor returned by the optimization procedure
and an empirical risk minimizer h∗n.

Proposition 5. For any empirical risk minimizer h∗n ∈ argminh∈HLn(h), the estimation error verifies

L(h∗n)− inf
h∈H

L(h) ≤ 2 sup
h∈H
|Ln(h)− L(h)|

Proof. We have
L(h∗n)− inf

h∈H
L(h) ≤ |L(h∗n)− Ln(h∗n)|+ |Ln(h∗n)− inf

h∈H
L(h)|

With
|L(h∗n)− Ln(h∗n)| ≤ sup

h∈H
|Ln(h)− L(h)|

since h∗n ∈ H, and :
|Ln(h∗n)− inf

h∈H
L(h)| = | inf

h∈H
Ln(h)− inf

h∈H
L(h)| ≤ sup

h∈H
|Ln(h)− L(h)|

after separating the cases where | infh∈H Ln(h)− infh∈H L(h)| > 0 and | infh∈H Ln(h)− infh∈H L(h)| < 0.
The classical machine learning strategy is to find the right H to keep both the approximation error and the estimation error low.1. When H is too small, no predictor h ∈ H is able to model the complexity of the data and to approach the Bayes risk. Thisis called underfitting.2. When H is too large, the bound from proposition 5 (maximal generalization gap over H) will increase, and the chosen empiricalrisk minimizer h∗n may generalize poorly despite having a low training error. This is called overfitting.

Remark 3. Similarly, the expected error can also be decomposed into a bias term due to model mis-specification and a variance
term due to random noise being modeled by h∗n. This is the bias-variance trade-off, and is also highly dependent on the
capacity of H, the chosen class of predictors.

Exercise 1 (Bias-Variance decomposition). Assume that Y = h(X ) + ε , with E[ε ] = 0, V ar(ε) = σ 2. Show that, for any
x ∈ Rd , the expected error of a predictor hn obtained with the random dataset Dn is :

E[(Y − hn(X ))2|X = x ] = (h(x)− Ehn(x))2 + E[(Ehn(x)− hn(x))2] + σ 2
In order to ensure a consistent estimator hn, we can control H explicitly e.g. by choosing the number of features used in a linearclassifier, or the number of layers of a neural network.

Theorem 6 (Vapnik-Chervonenkis inequality). For any data distribution P(X, Y ), by using VH the VC-dimension of the class
H as a measure of the class complexity, one has

E sup
h∈H
|Ln(h)− L(h)| ≤ 4√VH log(n+ 1)

n

A complete introduction to Vapnik-Chervonenkis theory is outside the scope of this lecture, but VH can be defined as the cardinalityof the largest set of points that can be shattered, i.e. there is at least one h ∈ H that can assign all possible labels to the set.Combining this result with proposition 5 gives a useful bound on the generalization error for a number of model classes. For instance,if H is a class of linear classifiers using d features (potentially non-linear transformations of input x), then we have : VH ≤ d + 1.Other measures of the richness of the model class H also exist, such as the Rademacher complexity, and can be useful in situationswhere VH = +∞, or in regression settings.
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1.3 Modern practiceFollowing results from section 1.1, a widely adopted view is that, after a certain threshold, “larger models are worse” as they willoverfit and generalize poorly. Yet, in modern machine learning practice, very large models with enough parameters to reach almostzero training error are frequently used. Such models are able to fit almost perfectly (i.e. interpolate) the training data and stillgeneralize well, actually performing better than smaller models (e.g. to classify 1.2M examples, AlexNet had 60M parameters andVGG-16 and VGG-19 both exceeded 100M parameters [8]). Understanding generalization of overparameterized models in moderndeep learning is an active field of research, and we focus on the double descent phenomenon, first demonstrated by [3] and illustratedin Figure 1.

Figure 1: The classical risk curve arising from the bias-variance trade-off and the double descent risk curve with the observed modern interpolationregime. Taken from [3]
For simpler class of models, classical statistical learning guarantee that the test risk decreases when the class of models gets morecomplex, until a point where the bounds do not control the risk anymore. However it seems that, beyond a certain threshold, increasingthe capacity of the models actually decreases the test risk again. This is the “modern” interpolating regime, with overparameterizedmodels. As this phenomenon depends not only on the class of predictors H, but also on the training algorithm and regularizationtechniques, we define a training procedure T to be any procedure that takes as input a dataset Dn and outputs a classifier hn, i.e.
hn = T (Dn) ∈ H. We can now make an informal hypothesis, after defining the notion of effective model complexity (from [16]).

Definition 7 (Effective Model Complexity). The Effective Model Complexity (EMC) of a training procedure T , w.r.t. distribution
P(X, Y ), is the maximum number of samples n on which T achieves on average ≈ 0 training error. That is, for ε > 0 :

EMCP,ε (T ) = max{n ∈ N|EL(hn) ≤ ε}

Hypothesis 8 (Generalized Double Descent hypothesis, informal). For any data distribution P(X, Y ), neural-network-based
training procedure T , and small ε > 0, if we consider the task of predicting labels based on n samples from P then, as
illustrated on figure 1:• Under-parameterized regime. If EMCP,ε (T ) is sufficiently smaller than n, any perturbation of T that increases its

effective complexity will decrease the test error.• Critically parameterized regime. If EMCP,ε (T ) ≈ n, then a perturbation of T that increases its effective complexity might
decrease or increase the test error.• Over-parameterized regime. If EMCP,ε (T ) is sufficiently larger than n, any perturbation of T that increases its effective
complexity will decrease the test error.

Empirically, this definition of effective model capacity translates into multiple axis along which the double descent can be observed: epoch-wise, model-wise (e.g. increasing the width of convolutional layers or the embedding dimension of transformers) and evenwith regularization, by decreasing weight decay. Figure 2 illustrates this.
2 Inductive biases
In the supervised learning problem, the model needs to generalize patterns observed in the training data to unseen situations. Inthat sense, the learning procedure has to use mechanisms similar to inductive reasoning. As there are generally many possiblegeneralizable solutions, [15] advocated the need for inductive biases in learning generalization. Inductive biases are assumptions
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(a) Test error as a function of model size and train epochs (b) Train error of the corresponding models
Figure 2: All models are Resnet18s trained on CIFAR-10 with 15% label noise (training labels artificially made incorrect), data-augmentation, andAdam for up to 4K epochs. Taken from [16]
made in order to prioritized one solution over another both exhibiting the same performance on the training data. For example, acommon inductive bias is the Occam’s razor principle stating that in case of equally good solutions the “simplest” one should bepreferred. Another form of inductive bias is to incorporate some form of prior knowledge about the structure of the data, its generationprocess or to constrain the model to respect specific properties.In the under-parameterized regime, regularization can be used for capacity control and is a form of inductive bias. One commonchoice is to search for small norm solutions, e.g. adding a penalty term, the L2 norm of the weights vector. This is known as Tikhonovregularization in the linear regression setting (also known as Ridge regression in this case).In the over-parameterized regime, as the complexity of H and the EMC increases, the number of interpolating solutions (i.e. achievingalmost zero training error) increases and the question of the selection of a particular element in argminh∈HLn(h) is crucial. Inductivebiases, explicit or implicit, are a way to find predictors that generalize well.
2.1 Explicit inductive biasesSeveral common inductive biases can be used to observe a model-wise double descent [4] (e.g. as the number of parameters Nincreases).
Least Norm For the model class of Random Fourier Features (defined in section 3.2), by choosing explicitly the minimum normlinear regression in the feature space. This bias towards the choice of parameters of minimum norm is common to a lot of machinelearning model. For example, the ridge regression induce a constraint on the L2 norm of the solution and the lasso regression on the
L1 norm. We can also see the support vector machine (SVM) as a way of inducing a least norm bias because maximizing the marginis equivalent to minimizing the norm of the parameter under the constraint that all points are well classified.
Model architecture Another way of inducing a bias is by choosing a particular class of functions that we think is well suited forour problem. The authors in [2] discuss different type of inductive bias considered by different type of neural network architectures.Working with images it is better to use a convolutional neural network (CNN) as it can induce translational equivariance, whereasthe recurrent neural network (RNN) is better suited to capture long-term dependencies in a sequence data. Using a naive Bayesclassifier is of great utility if we know that the features are independent, etc.
Ensembling Random forest models use yet another type of inductive bias. By averaging potentially non-smooth interpolating trees,the interpolating solution has a higher degree of smoothness and generalizes better than any individual interpolating tree.
2.2 Implicit Bias of gradient descentGradient descent is a widely used optimization procedure in machine learning, and has been observed to converge on solutions thatgeneralize surprisingly well, thanks to an implicit inductive bias.We recall that the gradient descent update rule for parameter w using a loss function L is the following (where η > 0 is the stepsize):

wk+1 = wk − η∇L(w)
5



2.2.1 Gradient descent in under-determined least squares problemConsider a non-random dataset {(xi, yi)}ni=1, with (xi, yi) ∈ Rd × R, for i ∈ {1, . . . , n} and let X ∈ Rn×d be the matrix whichrows are the xTi and y ∈ Rn the column vector which elements are the yi. We consider the linear least squares:
min
w∈Rd

L(w) = min
w∈Rd

12∥∥Xw − y
∥∥2 (1)

We will study the property of the solution found using gradient descent.
Definition 9 (Moore-Penrose pseudo-inverse). Let A ∈ Rn×d be a matrix, the Moore-Penrose pseudo-inverse is the only
matrix A+ satisfying the following properties:

(i) AA+A = A
(ii) A+AA+ = A+ (iii) (A+A)T = A+A

(iv) (AA+)T = AA+
Furthermore, if rank(A) = min(n, d) then A+ has a simple algebraic expression:

- If n < d, then rank(A) = n and A+ = AT (AAT )−1
- If d < n, then rank(A) = d and A+ = (ATA)−1AT

- If d = n, then A is invertible and A+ = A−1
Lemma 10. For a matrix A ∈ Rn×d , Im(I-A+A) = Ker(A), Ker(A+) = Ker(AT ) and Im(A+) = Im(A).

Proof. Left as an exercise.
Theorem 11. The set of solutions SLS of the least square problem (i.e. minimizing (1)) is exactly:

SLS = {X+y+ (I-X+X)u, u ∈ Rd}

Proof sketch. Writing Xw − y = Xw −XX+y− (I −XX+)y prove using pseudo-inverse properties that Xw −XX+y and(I −XX+)y are orthogonal. Then using the Pythagorean theorem show that ∥∥Xw − y
∥∥2 ≥ ∥∥(I −XX+)y∥∥2, this inequalitybeing an equality if and only if Xw = XX+y. Then X+y is one solution of (1) and by Lemma 10 we can conclude that

{X+y+ (I −X+X)u, u ∈ Rd}, is the set of solutions. ◦

Remark 4. Depending on the rank of X , the set of solutions SLS will differ depending on the expression of X+:

- If n < d and rank(X) = n, then X+ = XT (XXT )−1: SLS = {XT (XXT )−1y+(I−XT (XXT )−1X)u, u ∈ Rd}

- If d < n and rank(X) = d, then X+ = (XTX)−1XT : SLS = {XT (XXT )−1y}
- If d = n and X is invertible, then X+ = X−1: SLS = {X−1y}

Proposition 12. Assuming that X has rank n and n < d, the least square problem (1) has infinitely many solutions and
X+y = XT (XXT )−1y is the minimum euclidean norm solution.

Proof. From the previous remark, we know that SLS = {XT (XXT )−1y+ (I −XT (XXT )−1X)u, u ∈ Rd}For arbitrary u ∈ Rd ,
(X+y)T (I −X+X)u (ii)= (X+XX+y)T (I −X+X)u = (X+y)T (X+X)T (I −X+X)u(iii)= (X+y)TX+X(I −X+X)u

= (X+y)TX+(X −XX+X)u (i)= 0
6



using (i), (ii) and (iii) from Definition 9. Thus, (X+y) and (I −X+X)u are orthogonal ∀u ∈ Rd , and applying the Pythagoreantheorem gives: ∥∥(X+y) + (I −X+X)u∥∥2 = ∥∥(X+y)∥∥2 + ∥∥(I −X+X)u∥∥2 ≥ ∥∥(X+y)∥∥2

Theorem 13. If the linear least square problem (1) is under-determined, i.e. (n < d) and rank(X) = n, using gradient descent
with a fixed learning rate 0 < η < 1

σmax (X) , where σmax (X) is the largest eigenvalue of X , from an initial point w0 ∈ Im(XT )
will converge to the minimum norm solution of (1).

Proof. As X is assumed to be of row rank n, we can write its singular value decomposition as :
X = UΣV T = U

[
Σ1 0] [V T1

V T2
]

where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices, Σ ∈ Rn×d is a rectangular diagonal matrix and Σ1 ∈ Rn×n is adiagonal matrix. The minimum norm solution w∗ can be rewritten as :
w∗ = XT (XXT )−1y = V1Σ−11 U Ty

The gradient descent update rule is the following (where η > 0 is the step size):
wk+1 = wk − η∇L(w) = wk − ηXT (Xwk − y) = (I − ηXTX)wk + ηXTy

Then, by induction, we have :
wk = (I − ηXTX)kw0 + η

k−1∑
l=0 (I − ηXTX)lXTy

Using the singular value decomposition of X , we can see that XTX = V ΣTΣV T . Furthermore, as V is orthogonal, V TV = I .Then, the gradient descent iterate at step k can be written:
wk = V (I − ηΣTΣ)kV Tw0 + ηV

( k−1∑
l=0 (I − ηΣTΣ)lΣT

)
U Ty

= V

[(I − ηΣ21)k 00 I

]
V Tw0 + ηV

( k−1∑
l=0
[(I − ηΣ21)lΣ10 ])

U Ty

By choosing 0 < η < 1/σmax (Σ1) with σmax (Σ1) the largest eigenvalue of Σ1, we guarantee that the eigenvalues of I − ηΣTΣ are allstrictly less than 1. Then :
V

[(I − ηΣ21)k 00 I

]
V Tw0 −−−→

k→∞
V

[0 00 I

]
V Tw0 = V2V T2 w0

and
η
k−1∑
l=0
[(I − ηΣ21)lΣ10 ]

−−−→
k→∞

η
[∑∞

l=0(I − ηΣ21)lΣ10 ] = [η(I − I + ηΣ21)−1Σ10 ] = [Σ−110 ]
Finally, noting w∞ the limit of gradient descent iterates we have in the limit :

w∞ = V2V T2 w0 + V1Σ−11 U Ty = V2V T2 w0 + XT (XXT )−1y = V2V T2 w0 + w∗

Because w0 in the range of XT , then we can write w0 = XT z for some z ∈ Rn.
V2V T2 w0 = V

[0 00 I

]
V TXT z = V

[0 00 I

]
V TV ΣTU T z = V

[0 00 I

] [
Σ10 ]U T = 0

Therefore gradient descent will converge to the minimum norm solution.
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2.2.2 Gradient descent on separable dataIn this section we are concerned with the effect of using gradient descent on a classification problem on a linearly separable datasetand using a smooth (we will explain in what sens), strictly decreasing and non-negative surrogate loss function. For the sake ofclarity, we will prove the results using the exponential loss function ` : x 7→ e−x but the results will be expressed for the moregeneral case.
Definition 14 (Linearly separable dataset ). A dataset Dn = {(xi, yi)}ni=1 where ∀i ∈ [[1, n]], (xi, yi) ∈ Rd ×{−1, 1} is linearly
separable if ∃ w∗ such that ∀i : yiwT

∗ xi > 0.

The results of this section hold assuming the considered loss functions respect the following properties :
Assumption 1. The loss function ` is positive, differentiable, monotonically decreasing to zero, (i.e. ` (u) > 0, ` ′(u) < 0,limu−→∞ ` (u) = limu−→∞ ` ′(u) = 0) and limu−→−∞ ` ′(u) 6= 0.

Assumption 2 (β-Smoothness). The gradient of ` is β-Lipschitz:

∀u, v ∈ R,
∥∥∇` (u)−∇` (v )∥∥ ≤ β∥u− v∥.

Assumption 3 (Tight Exponential tail). Generally speaking a function f : R 7→ R is said to have a tight exponential tail if
there exist positive constants c, a, µ1, µ2 and u0 such that:

∀u > u0, (1− e−µ1u) ≤ c f (u)eau ≤ (1 + e−µ2u).
In our case we will say that a differentiable loss function ` has a tight exponential tail when its negative derivative −` ′ has a
tight exponential tail.

(a) Losses (b) Negative Derivative Losses
Figure 3: Illustration of tight exponential tail property for different common loss functions. We can see that both exponential and logistic lossfunctions has a tight exponential tail. The hinge loss and 0-1 loss functions have been displayed for reference only.
We consider the following classification problem:

min
w∈Rd

L(w) = min
w∈Rd

n∑
i=1 ` (yiwT xi)

where ∀i ∈ [[1, n]], (xi, yi) ∈ Rd × {−1, 1} and ` : R 7→ R∗+ is a surrogate loss function of the 0-1 loss.We will study the behavior of the solution found by gradient descent using a fixed learning rate η:
wt+1 = wt − η∇L(wt ) = wt − η

n∑
i=1 `

′(yiwT
t xi)yixi (2)
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Lemma 15. Let D = {(xi, yi)}ni=1 be a linearly separable dataset where ∀i ∈ [[1, n]], (xi, yi) ∈ Rd×{−1, 1} and ` : R 7→ R∗+
a loss function under assumptions 1 and 2. Let wt be the iterates of gradient descent using learning rate 0 < η < 2

βσ 2
max (X ) and

any starting point w0. Then we have:

(1) limt−→∞ L(wt ) = 0,
(2) limt−→∞

∥∥wt∥∥ =∞,
(3) ∀i : limt−→∞ yiwT

t xi =∞,

Proof. As mentioned we use the exponential loss function: ` : u 7→ e−u, which.Since D is linearly separable, ∃w∗ such that wT
∗ xi > 0,∀i. Then for w ∈ Rd :

wT
∗∇L(w) = n∑

i=1 −exp(−yiwT xi)︸ ︷︷ ︸
<0

yiwT
∗ xi︸ ︷︷ ︸

>0
< 0.

Therefore there is no finite critical points w , for which ∇L(w) = 0. But gradient descent on a smooth loss with an appropriatelearning rate is always guaranteed to converge to a critical point : in other words ∇L(wt ) −→ 0. This necessarily implies that∥∥wt∥∥ −→ ∞, which is (2). It also implies that ∃t0 s.t, ∀t > t0,∀i : yiwT
t xi > 0 in order to make the exponential term converge tozero, this is (3). But in that case, we also have L(wt ) −→ 0, which is (1).

The norm of the previous solution diverges, but we can normalize it to have norm 1.
Theorem 16. Let D = {(xi, yi)}ni=1 be a linearly separable dataset where ∀i ∈ [[1, n]], (xi, yi) ∈ Rd×{−1, 1} and ` : R 7→ R∗+
a loss function with under assumptions 1, 2 and 3. Let wt be the iterates of gradient descent using a learning rate η such that0 < η < 2

βσ 2
max (X ) and any starting point w0. Then we have:

lim
t−→∞

wt∥∥wt∥∥ = wsvm∥∥wsvm∥∥
where wsvm is the solution to the hard margin SVM:

wsvm = argmin
w∈Rd

∥w∥2 s.t. yiwT xi ≥ 1,∀i.
Proof sketch. We will just give the main ideas behind the proof of this theorem using the exponential loss function. We will furthermoreassume that wt/∥∥wt∥∥ converges to some limit w∞. For a detailed proof and in the more general case of the loss function having properties1 to 3 please refer to [23].By Lemma 15 we have ∀i : limt−→∞ yiwT

t xi =∞. As wt∥∥wt∥∥ converges to w∞ we can write wt = g(t)w∞+ρ(t) such that g(t) −→∞,
∀i : yiwT

∞xi > 0 and limt−→∞ ρ(t)
g(t) = 0. The gradient can then be written as:
−∇L(wt ) = n∑

i=1 e
−yiwT

t xixi = n∑
i=1 e

−g(t)yiwT
∞xi e−yiρ(t)T xixi (3)

We can see that as g(t) −→∞ only the samples with largest exponents in the sum of the right hand side of (3) will contribute to thegradient. But the exponents are maximized for i ∈ S = argmini yiwT
∞xi which correspond to the samples minimizing the margin:i.e. the support vectors XS = {xi, i ∈ S}. The negative gradient −∇L(wt ) would then asymptotically become a non-negative linearcombination of support vectors and because ∥∥wt∥∥ −→∞ (by Lemma 15) the first gradient steps will be negligible and the limit w∞will get closer and closer to a non-negative linear combination of support vectors and so will its scaled version ŵ = w∞/ mini yiwT

∞xi(the scaling is done to make the margin of the support vectors equal to 1). We can therefore write:
ŵ = n∑

i=1 αixi with
{

αixi ≥ 0 and yiŵT xi = 1 if i ∈ S
αixi = 0 and yiŵT xi > 1 if i /∈ S (4)

We can recognize the KKT conditions for the hard margin SVM problem (see [6] Chapter 7, Section 7.1) and conclude that ŵ = wsvm.Then w∞∥∥w∞∥∥ = wsvm∥∥wsvm∥∥ . ◦
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Remark 5. In the proof of Lemma 15 we have seen that L(wt ) −→ 0. That means that gradient descent converges to a global
minimum.

Remark 6. Gradient descent has been suspected to induce a bias towards simple solutions, not only in the previous linear
settings, but in deep learning as well, greatly improving generalization performance. It would explain the double descent
behavior of deep learning architectures, and recent works such as [11] have been studying the learning dynamics in more
complex settings.

3 The reasons behind double descent
In this section, we consider two settings where double descent can be empirically observed and mathematically justified, in order togive the reader some intuition on the role of inductive biases. We conclude with some references to recent related works studyingoptimization in the over-parameterized regime, or linking the double descent to a physical phenomenon named jamming.Fully understanding the mechanisms behind this phenomenon in deep learning remains an open question but, as introduced in section2, inductive biases seem to play a key role.In the over-parameterized regime, empirical risk minimizers are able to interpolate the data. Intuitively :• Near the interpolation point, there are very few solutions that fit the training data perfectly. Hence, any noise in the data ormodel mis-specification will destroy the global structure of the model, leading to an irregular solution that generalizes badly(figure 4c).• As effective model capacity grows, many more interpolating solutions exist, including some that generalize better and can beselected thanks to the right inductive bias, e.g. smaller norm (figure 4d), or ensemble methods.

(a) d = 1 (b) d = 3 (c) d = 20 (d) d = 1000
Figure 4: Fitting degree d Legendre polynomials (orange curve) to n = 20 noisy samples (red dots), from a polynomial of degree 3 (blue curve).Gradient descent is used to minimize the squared error, which leads to the smallest norm solution (considering the norm of the vector of coefficients).Taken from [17].
3.1 Linear Regression with Gaussian NoiseIn this section we consider the family class (Hp)p∈J1,dK of linear functions h : Rd 7→ R where exactly p components are non-zero(1 ≤ p ≤ d). We will study the generalization error obtain using ERM when increasing p (which is regarded as the class complexity).The class of predictors Hp is defined as follow:

Definition 17. For p ∈ J1, dK, Hp is the set of functions h : Rd 7→ R of the form:

h(u) = uTw, for u ∈ Rd

With w ∈ Rd having exactly p non-zero elements.

Let (X, ε) ∈ Rd × R be independent random variables with X ∼ N (0, I) and ε ∼ N (0, σ 2). Let h∗ ∈ Hd and define the randomvariable Y = h∗(X ) + σε = X Tw + σε , with σ > 0 with w ∈ Rd defined by h∗. We consider (Xi, Yi)ni=1 n iid copies of (X, Y ). We
10



are interested in the following problem: min
h∈Hd

E[(h(X )− Y )2] (5)
Let X ∈ Rn×d the random matrix which rows are the X T

i and Y = (Y1, .., Yn)T ∈ Rn. In the following we will assume that X isfull row rank and that n� d. Applying empirical risk minimization we can write:
min
w∈Rd

12∥∥Xw − Y
∥∥2 (6)

Definition 18 (Random p-submatrix/p-subvector1). For any (p, q) ∈ J1, dK2 such that p + q = d and matrix A ∈ Rn×d and
column vector v ∈ Rd , we will denote by A∼p (resp. v∼p) the sub-matrix (resp. sub-vector) obtained by randomly selecting a
subset of p columns (resp. elements), and by A∼q ∈ Rn×q and v∼q ∈ Rq their discarded counterpart.

In order to solve (6) we will search for a solution in Hp ⊂ Hd and increase p progressively which is a form of structural empiricalrisk minimization as Hp ⊂ Hp+1 for any p < d.Let p ∈ J1, dK, we are then interested in the following sub-problem:
min
w∈Rp

12∥∥X∼pw − y
∥∥2

We have seen in proposition 12 of section 2.2.1 that the least norm solution is ŵ∼p = X+
∼py. If we define ŵ∼q := 0 then we willconsider as a solution of the global problem (5) ŵ := φp(ŵ∼p, ŵ∼q) where φp : Rp × Rq 7→ Rd is a map rearranging the terms of

ŵ∼p and ŵ∼q to match the initial indices of w .
Theorem 19. Let (x, ε) ∈ Rd×R independent random variables with x ∼ N (0, I) and ε ∼ N (0, σ 2), and w ∈ Rd . we assume
that the response variable y is defined as y = xTw + σε . Let (p, q) ∈ J1, dK2 such that p + q = d, X∼p the randomly
selected p columns sub-matrix of X. Defining ŵ := φp(ŵ∼p, ŵ∼q) with ŵ∼p = X+

∼py and ŵ∼q = 0.
The risk of the predictor associated to ŵ is:

E[(y− xT ŵ)2] =


(∥∥w∼q∥∥2 + σ 2)(1 + p
n−p−1 ) if p ≤ n− 2+∞ if n− 1 ≤ p ≤ n+ 1∥∥w∼p∥∥2(1− n

p ) + (∥∥w∼q∥∥2 + σ 2)(1 + n
p−n−1 ) if p ≥ n+ 2

Proof. Because x is zero mean and identity covariance matrix, and because x and ε are independent:
E[(y− xT ŵ)2] = E[(xT (w − ŵ) + σε)2] = σ 2 + E[∥∥w − ŵ

∥∥2] = σ 2 + E[∥∥w∼p − ŵ∼p
∥∥2] + E[∥∥w∼q − ŵ∼q

∥∥2]
and because ŵ∼q = 0, we have: E[(y− xT ŵ)2] = σ 2 + E[∥∥w∼p − ŵ∼p

∥∥2] + ∥∥w∼q∥∥2
The classical regime (p ≤ n) as been treated in [7]. We will then consider the interpolating regime (p ≥ n). Recall that X is assumedto be of rank n. Let η = y−X∼pw∼p. We can write :

w∼p − ŵ∼p = w∼p −X+
∼py = w∼p −X+

∼p(η + X∼pw∼p) = (I −X+
∼pX∼p)w∼p −X+

∼pη

It is easy to show (left as an exercise) that (I −X+
∼pX∼p) is the matrix of the orthogonal projection on Ker(X∼p). Furthermore,

−X+
∼pη ∈ Im(X+

∼p) = Im(XT
∼p). Then (I −X+

∼pX∼p)w∼p and −X+
∼pη are orthogonal and the Pythagorean theorem gives:∥∥w∼p − ŵ∼p

∥∥2 = ∥∥(I −X+
∼pX∼p)w∼p∥∥2 + ∥∥X+

∼pη
∥∥2

We will treat each term of the right hand side of this equality separately.
1The notation used for the random p-submatrix and random p-subvector is not common and is introduced for clarity.
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• ∥∥(I −X+
∼pX∼p)w∼p∥∥2: X+

∼pX∼p is the matrix of the orthogonal projection on Im(XT
∼p) = Im(X+

∼p), then using again thePythagorean theorem gives: ∥∥(I −X+
∼pX∼p)w∼p∥∥2 = ∥∥w∼p∥∥2 − ∥∥X+

∼pX∼pw∼p
∥∥2

Because X+
∼pX∼p is the matrix of the orthogonal projection on Im(XT

∼p) we can write X+
∼pX∼pw∼p as a linear combinationof rows of Xp, then using the fact that the xi are i.i.d and of standard normal distribution we have:

E[∥∥X+
∼pX∼pw∼p

∥∥2] = ∥∥w∼p∥∥2 n
p then E[∥∥(I −X+

∼pX∼p)w∼p∥∥2] = ∥∥w∼p∥∥2(1− n
p )

• ∥∥X+
∼pη
∥∥2: The calculation of this term used the "trace trick" and the notion of distribution of inverse-Wishart for pseudo-inversematrices and is beyond the scope of this lecture. It can be shown that:

E[∥∥X+
∼pη
∥∥2] = {(∥∥w∼q∥∥2 + σ 2)( n

p−n−1 ) if p ≥ n+ 2+∞ if p ∈ {n, n+ 1}

Corollary 1. Let T be a uniformly random subset of J1, dK of cardinality p. Under the setting of Theorem 19 and taking the
expectation with respect to T . The risk of the predictor associated to ŵ is:

E[(Y − X T ŵ)2] = {((1− p
d )∥w∥2 + σ 2) (1 + p

n−p−1 ) if p ≤ n− 2∥w∥2 (1− n
d (2− d−n−1

p−n−1 ))+ σ 2(1 + n
p−n−1 ) if p ≥ n+ 2

Proof. Since T is a uniformly random subset of J1, dK of cardinality p:
E[∥∥w∼p∥∥2] = E[∑

i∈T

w2
i ] = E[ d∑

i=1 w
2
i 1T (i)] = d∑

i=1 w
2
i E[1T (i)] = d∑

i=1 w
2
i P[i ∈ T ] = ∥w∥2 p

d

and, similarly:
E[∥∥w∼q∥∥2] = ∥w∥2(1− p

d )
Plugging into Theorem 19 ends the proof.
3.2 Random Fourier FeaturesIn this section we consider the RFF model family [22] as our class of predictors HN .

Definition 20. We call Random Fourier Features (RFF) model any function h : Rd → R of the form :

h(x) = βT z(x)
With z(x) = √ 2

N

 cos(ωT1 x + b1)
...cos(ωTNx + bN

)
, β ∈ RN the parameters of the model and ∀i ∈ J1, NK

{
ωi ∼ N (0, σ 2Id)
bi ∼ U([0, 2π ]) . The

vectors ωi and the scalars bi are sampled before fitting the model, and z is called a randomized map.

The RFF family is a popular class of models that are linear w.r.t. the parameters β but non-linear w.r.t. the input x , and can beseen as two-layer neural networks with fixed weights in the first layer. In a classification setting, using these models with the hingeloss amounts to fitting a linear SVM to n feature vectors (of dimension N). RFF models are typically used to approximate theGaussian kernel and reduce the computational cost when N � n (e.g. kernel ridge regression when using the squared loss and a
l2 regularization term). In our case however, we will go beyond N = n to observe the double descent phenomenon.
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Remark 7. Clearly, we have HN ⊂ HN+1 for any N ≥ 0.

Proposition 21 (Approximation of the Gaussian Kernel, informal). Let k : (x, y)→ e−
12σ2 ||x−y||2 be the Gaussian kernel on Rd ,

and let H∞ be a class of predictors where empirical risk minimizers on Dn = {(x1, y1), . . . , (xn, yn)} can be expressed as
h : x →∑n

k=1 αkk (xk , x). Then, as N →∞, HN becomes a closer and closer approximation of H∞.

Proof sketch. For any x, y ∈ Rd , with the vectors ωk ∈ Rd sampled from N (0, σ 2Id) :
k (x, y) = e−

12σ2 (x−y)T (x−y) (1)= Eω∼N (0,σ 2Id )[eiωT (x−y)] = Eω∼N (0,σ 2Id )[cos(ωT (x − y))] since k (x, y) ∈ R

≈ 1
N

N∑
k=1 cos(ωTk (x − y)) = 1

N

N∑
k=1 2 cos(ωTk x + bk

) cos(ωTk y+ bk
) (2)= z(x)T z(y)

Where (1) and (2) are left as an exercise, with indications in [13] if needed.
Hence, for h ∈ H∞ : h(x) =∑n

k=1 αkk (xn, x) ≈ ( N∑
k=1 αkz(xk )

)T

︸ ︷︷ ︸
β

z(x) ◦

A complete definition is outside of the scope of this lecture, but H∞ is actually the Reproducing Kernel Hilbert Space (RKHS)corresponding to the Gaussian kernel, for which RFF models are a good approximation when sampling the random vectors ωi from anormal distribution.We use ERM to find the predictor hn,N ∈ HN and, in the interpolation regime where multiple minimizers exist, we choose the onewhose parameters β ∈ RN have the smallest l2 norm. This training procedure allows us to observe a model-wise double descent(figure 5b). Indeed, in the under-parameterized regime, statistical analyses suggest choosing N ∝
√
n log(n) for good test riskguarantees [22]. And as we approach the interpolation point (around N = n), we observe that the test risk increases then decreasesagain.In the over-parameterized regime (N ≥ n), multiple predictors are able to fit perfectly the training data. As HN ∈ HN+1, increasing

N leads to richer model classes and allows constructing interpolating predictors that are more regular, with smaller norm (eventuallyconverging to hn,∞ obtained from H∞). As detailed in theorem 22 (in a noiseless setting), the small norm inductive bias is indeedpowerful to ensure small generalization error.
Theorem 22 (Belkin et al. [4]). Fix any h∗ ∈ H∞. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random variables, where Xi is drawn
uniformly at random from a compact cube Ω ∈ Rd , and Yi = h∗(Xi) for all i. There exists constants A, B > 0 such that, for
any interpolating h ∈ H∞ (i.e., h(Xi) = Yi for all i), so that with high probability :

sup
x∈Ω |h(x)− h∗(x)| < Ae−B(n/logn)1/d (||h∗||H∞ + ||h||H∞ )

Proof. We refer the reader directly to [4] for the proof.
3.3 Related works
3.3.1 Optimization in the over-parameterized regimeFor reasons that are still under investigation, overparameterization seems beneficial not only in the statistical learning framework,but from an optimization standpoint as well as it facilitates convergence to global minima, in particular with the gradient descentprocedures.The optimization problem can be framed as minimizing a certain loss function L(w) with respect to its parameters w ∈ RN , suchas the square loss L(w) = 12 ∑n

i=1(f (xi, w)− yi)2 where {(xi, yi)}ni=1 is our given training dataset and f : (Rd × RN )→ R is ourmodel.
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(a) Plot of risk E[(y−xT ŵ)2 ] as a function of p, under the random selectionmodel of the subset of p features. Here ∥w∥2 = 1, σ 2 = 1/25, d = 100and n = 40. Taken from [5]
(b) Model-wise double descent risk curve for RFF model on a subset ofMNIST (n = 104 , 10 classes), choosing the smallest norm predictor hn,Nwhen N > n. The interpolation threshold is achieved at N = 104 . Takenfrom [4], which uses an equivalent but slightly different definition of RFFmodels.

Figure 5: Risk curves as a function of model capacity
Exercise 2. Assume that ` : Y → R is convex and f : X → Y is linear. Show that ` ◦ f is convex.

When f is non-linear however (which is habitually the case in deep learning) the landscape of the loss function is generally non-convex. Therefore, first order methods such as GD or SGD are likely to converge and get trapped in spurious local minima, dependingon the initialization. Yet, in the over-parameterized regime where there are multiple global minima interpolating almost perfectly thedata, it seems that SGD has no problem converging to these solutions, despite the highly non-convex setting. Recent works aretrying to explain this phenomenon.For instance, [20] shows that, for one-hidden layer neural networks that (1) have smooth activation functions, (2) are over-parameterized,i.e. N ≥ Cn2 where C depends on the distribution of the data and (3) are initialized with i.i.d. N (0, 1) entries, then with highprobability GD converges quickly to a global optimum. Similar results also hold for ReLU activation functions and for SGD.In [14], the authors show that sufficiently over-parameterized systems, including wide neural networks, generally satisfy a conditionthat allows gradient descent to converge efficiently, for a broad class of problems. They use the PL-condition (from Polyak andLojasiewicz [21]) which does not require convexity but is sufficient for efficient minimization by GD. One key point is that the lossfunction L(w) is generally non-convex in the neighborhood of minimizers. Due to the over-parameterization, the Hessian matrices
∇2L(w) are positive semi-definite but not positive definite in these neighborhoods, which is incompatible with convexity for non-linearsets of solutions. This is in contrast to the under-parameterized landscape which generally has multiple isolated local minima withpositive definite Hessian matrices. Figure 6 illustrates this.

Figure 6: Left : Loss landscape of under-parameterized models, locally convex at local minima. Right : Loss landscape of over-parameterizedmodels, incompatible with local convexity. Taken from [14].
In addition to better convergence guarantees, over-parameterization can even accelerate optimization. By working with linear neuralnetworks (hence fixed expressiveness), [1] finds that increasing depth has an implicit effect on gradient descent, combining certainforms of momentum and adaptive learning rates (two well-known tools in the field of optimization). They observe the accelerationfor non-linear networks as well (replacing weight matrices by a product of matrices, for fixed expressiveness), and even when usingexplicit acceleration methods such as Adam.
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3.3.2 Neural networks as a physical system : the jamming transitionIn order to study the loss landscape, [24] make an analogy between neural networks and complex physical systems with non-convexenergy landscape, called glassy systems. Indeed, the loss function can be interpreted as the potential energy of the system f , with alarge number of parameters N (degrees of freedom). By considering the hinge loss, the minimization of L(w ; Dn) actually amounts toa constraint-classification problem (with n constraints, N continuous degrees of freedom), already studied in physics.Using this analogy, they show that the behavior of deep networks near the interpolation point is similar to the behavior of somegranular systems, that undergo a critical jamming transition when their density increases such that they are forced to be in contactone another. In the under-parameterized regime, not all the training examples can be classified correctly, which leads to unsatisfiedconstraints. But in the over-parameterized regime, there is no stable local minima : the network reaches a global minima zero trainingloss.As illustrated in figure 7, the authors are able to quantify the location of the jamming transition in the (n, N) plane (considering Nas the effective number of parameters of the network). Considering a fully-connected network with arbitrary depth, ReLU activationfunctions and a dataset of size n, they give a linear upper bound on the critical number of parameters N∗ characterizing the jammingtransition : N∗ ≤ 1
C0 n where C0 is a constant. In their experiments, it seems that the bound is tight for random data but that N∗increases sub-linearly with n for structured data (e.g. MNIST), as illustrated on figure 7.

Figure 7: N : degrees of freedom, n : training examples. Inspired from [24]
Similarly to other works, they observe a peak in test error at the jamming transition. In [10], using the same setting of fixed-depthfully-connected networks, they argue that this may be due to ||f || diverging near the interpolation point N = N∗. Interestingly, theyalso observe that near-optimal generalization can be obtained using an ensemble average of networks with N slightly beyond N∗.
4 Conclusion
From a statistical learning point of view, deep learning is a challenging setting to study and some recent empirical successes are notyet well understood. The double descent phenomenon, arising from well-chosen inductive biases in the over-parameterized regime,has been studied in linear settings and observed with deep networks [18].In addition to the references presented in section 3.3, other lines of work seem promising. Notably, [11][19][23][12] are working towardsa better understanding of the implicit bias induced by optimization algorithms. Finally, we refer the reader to subsequent works ofBelkin et al. such as [9], that finds multiple descent curves with an arbitrary number of peaks, due to the interaction between theproperties of the data and the inductive biases of learning algorithms.
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